plant reaction to nm ranges....

  • Thread starter clockworx
  • Start date
  • Tagged users None
clockworx

clockworx

953
243
The study and understanding of the interrelation of optical radiation and plants, seeds and soil is critically important for our existence. Research and control of biochemical factors require a precise and predictable measurement technology.

The absorption of optical radiation in the range of wavelengths between 300 nm and 930 nm initiates photochemical reactions in plants that are essential for plant growth. The three most important reactions of plants to optical radiation are: Photosynthesis, Phototropism, Photomorphogenesis

Photosynthesis
Photosynthesis is one of the most important biochemical processes on the planet. In the process of photosynthesis green plants absorb carbon dioxide from the atmosphere and water from the soil, combining them with the aid of radiation energy to build sugar, releasing oxygen and water into the atmosphere. This process can be described by the following assimilation formula:

The occurrence of photosynthesis in plants is characterized by the green color of their leaves. This is due to chlorophyll which is absorbed with the photosynthetically active radiation. Accordingly, the absorption of the quanta of radiation energy in the chlorophyll molecules raises the electrons to a higher energy state. As they return to their initial state, the energy released is converted into chemical energy.

In general plant physiology, the term Photosynthetically Active Radiation (PAR) refers to the radiation in the range of wavelengths between 400 nm and 720 nm. This is the energy that is absorbed by the assimilation pigments in blue-green algae, green algae and higher order plants. The wavelengths for the lower limit (400 nm) and an upper limit (720 nm) are not entirely rigid. Photosynthetic reactions have, for example, been established in some algae at wavelengths shorter than 400 nm. In general, the lower limit depends on the structure and the thickness of the leaf as well as on the chlorophyll content. Some research projects have shown 700 nm as the upper wavelength limit.

In DIN 5031, Part 10 (currently in the draft phase) the spectral response function for photosynthesis is defined, and this is illustrated graphically below. For plant physiology, this range can be divided into three narrower bands:

- 400 nm to 510 nm: strong light absorption by chlorophyll, high morphogenetic effect
- 510 nm to 610 nm: weak light absorption by chlorophyll, no morphogenetic effect
- 610 nm to 720 nm: strong light absorption by chlorophyll, high morphogenetic and ontogenetic effect

This response function can be considered as a mean spectral response function. A number of different investigations have shown that the spectral absorption spectra of various plant types can be very different. These differences can also occur, in a single plant, e.g. in leaves of different ages or with different thicknesses, chlorophyll content, etc.. It should also be noted that the spectral response function for photosynthesis is defined with avoidance of mutual cell shading, experimenting with a young, thin leaf or with a thin layer of algae suspension.
 
clockworx

clockworx

953
243
The spectral distribution of the response function for photosynthesis might give the impression that visible radiation in the green range centered around 550 nm contributes very little to the photosynthetic process, and therefore is of minor importance. Just the contrary has been demonstrated by experiment. It is precisely this green radiation that yields the greatest productivity and efficiency in densely populated arrangements of plants or in thick suspensions of micro-organisms. This discovery is important for investigations into the yields of plants in the lower layers of wooded areas or of greenhouse stocks, or in deep water (e.g. in sea plants).

Classical investigations into plant physiology have indicated that photosynthetic bacteria possess special pigments with strong absorption bands in vivo at 750 nm (chlorobium chlorophyll in the green chlorobacteria) or at 800, 850, 870 and 890 nm. In contrast to the blue-green algae, green algae and the higher plants, the absorption spectrum of the photosynthetic bacteria also extends into the UV region as far as about 300 nm.

phototropism-photosynthesis.gif


Fig. VI.10. Phototropism (blue) & Photosynthesis (green)
Ultraviolet Radiation EffectsThe weakening of the ozone layer has been discussed in public for more than a decade. It presents a serious challenge to plant physiology. Even above Europe, a reduction in the total amount of ozone of 3-6% per decade (since 1978) has been established, which correlates with a measured increase of up to 7% in the level of UV-B radiation in high alpine areas with clean air. In March of 1993 a 15% disappearance of ozone was observed, so that in general an increase in UV-B radiation must be expected.UV-B radiation penetrates the tissues and leads to molecular changes in DNA, proteins, lipids and phytohormones. At high levels of UV radiation, oxygen radicals are formed, leading to oxidation of proteins and lipids. The result of this is that growth, photosynthesis, and finally productivity and yield are impaired. Some field trials have provided evidence that in the presence of an ozone reduction of 25%, the UV-sensitive soy bean variety Essex, unlike the insensitive Williams variety, undergoes a reduction in photosynthesis, and therefore of yield, of up to 25%. This effect of UV-B radiation (280 nm-313.3 nm) is internationally known as "generalized plant damage", and is evaluated using the UV-B response function according to Caldwell. This GPD response function incorporates the degree of damage, linear growth, the cell division rate and other factors. So in the fields of plant physiology and crop cultivation it is necessary not only to investigate the positive photosynthetic effects of optical radiation, but also the negative effects, mostly due to UV radiation, if the activity and protection mechanisms of plants are to be understood and manipulated.

PhototropismPhototropism describes the effect of optical radiation on the direction of plant growth. The regions of maximum effect lie in the blue range between 380 nm and 520 nm (see Fig.VI.10). Radiation can have the effect of causing parts of plants to move.

PhotomorphogenesisPhotomorphogenesis describes the way in which plants are formed under the influence of optical radiation. Radiation in the red region of the spectrum encourages linear growth, while blue radiation yields small, strong plants. To be more precise, the ratio of the radiation intensities in the range of wavelengths from 690 nm to 780 nm (long wavelength red) to the range of wavelengths from 560 nm to 680 nm (short wavelength red) is of great importance for the plant's biological processes.
 
clockworx

clockworx

953
243
4978182 f260
By focusing on the nm wavelength absorption point (like 642nm), the rates of photosynthesis can be increased dramatically. Testing has also shown that if you do not focus directly on the wavelength absorption point (ie: using a 625nm or 630nm instead of 642nm) you will have dramatically lowered rates of photosynthesis by comparison. For these reasons you want to focus on making sure whichever grow light you purchase comes as close as possible to 439nm, 469nm, 483nm, 642nm, and 667nm.
 
clockworx

clockworx

953
243
I'm posting information on light, mainly because I've been doing a crazy amount of reading on nm ranges and the effect they have on plants, not just growth wise, but nutrient uptake. Ever since another member was thinking on the topic due to an observation he made in the garden. Its very hard to find info on the subject, I did however find a very good pdf im trying to convert now in which a test was done on this same topic and the results were very interesting ..and another test where a scientist used white light through a prism creating a full spectrum beam to grow plants..
 

Latest posts

Top Bottom